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Abstract The integration of advanced technologies into

manufacturing processes is critical for addressing the

complexities of modern industrial environments. In par-

ticular, the realm of human–robot interaction (HRI) faces

the challenge of ensuring that human operators can effec-

tively collaborate with increasingly sophisticated robotic

systems. Traditional interfaces often fall short of providing

the intuitive, real-time interaction necessary for optimal

performance and safety. To address this issue, we introduce

a novel system that combines digital twin (DT) technology

with augmented reality (AR) to enhance HRI in manufac-

turing settings. The proposed AR-based DT system creates

a dynamic virtual model of robot operations, offering an

immersive interface that overlays crucial information onto

the user’s field of vision. This approach aims to bridge the

gap between human operators and robotic systems,

improving spatial awareness, task guidance, and decision-

making processes. Our system is designed to operate at

three distinct levels of DT functionality: the virtual twin for

in-situ monitoring, the hybrid twin for intuitive interaction,

and the cognitive twin for optimized operation. By lever-

aging these levels, the system provides a comprehensive

solution that ranges from basic visualization to advanced

predictive analytics. The effectiveness of the AR-based DT

system is demonstrated through a human-centric user study

conducted in manufacturing scenarios. The results show a

significant reduction in operational time and errors,

alongside an enhancement of the overall user experience.

These findings confirm the potential of our system to

transform HRI by providing a safer, more efficient, and

more adaptable manufacturing environment. Our research

contributes to the advancement of smart manufacturing by

evidencing the synergistic benefits of integrating DT and

AR into HRI.

Keywords Digital twin � Intuitive interface � Augmented

reality � Human–robot interaction � Human-centricity

1 Introduction

The advent of Industry 4.0 has catalyzed a paradigmatic

shift in the manufacturing sector, driven by the assimilation

of advanced technological innovations such as the Internet

of Things (IoT) (Sisinni et al. 2018), artificial intelligence

(AI) (Wan et al. 2020), blockchain technology (Leng et al.

2023), augmented and virtual reality (AR/VR) (Eswaran

and Bahubalendruni 2022), and Robotics (Bhatt et al.

2020). Despite Industry 4.0’s predilection towards tech-

nology-centric approaches, there is an emerging trend

towards human-centric objectives, as espoused by Industry

5.0 (Huang et al. 2022). This nascent paradigm emphasizes

the pivotal role of human creativity, analytical prowess,

and distinctive skills, synergizing with advanced techno-

logical systems. In the realm of robotics, the automation of

monotonous and hazardous tasks has been instrumental in

amplifying productivity and curtailing human error. With

the advent of Industry 5.0, a critical focus of robotics

advancement is the enhancement of human–robot interac-

tion (HRI).

Given the fluidity of market trends and the complexity

of product specifications, the resilience of HRI systems is

integral to the adaptability and resilience of contemporary
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manufacturing infrastructures. To fortify the resilience of

HRI, particularly in terms of rapid recovery amidst alter-

ations to the manufacturing system, the establishment of an

efficacious and intuitive HRI system is imperative. Such

enhancement is contingent upon a nuanced understanding

of user engagement paradigms with robotic entities.

Researchers have investigated various interaction modali-

ties to facilitate user communication with robots. Based on

these modalities, HRI can be classified into seven

categories:

• Touch-based Interaction: Users can engage with robots

using touch screens on mobile devices, tablets, or

interactive surfaces, which may involve dragging or

drawing on a tablet (Chen et al. 2021), pointing and

touching target positions, or navigating virtual menus

on a smartphone (Cao et al. 2019). Touch interactions

are beneficial for precise input and programming of

robot motion (Fuste et al. 2020).

• Tangible Interaction: Users can modify the physical

shape of robots (Lindlbauer et al. 2016), interact with

them by handling tangible objects (Pedersen et al.

2011), or control them directly through grasping and

manipulation (Özgür et al. 2017).

• Voice Interaction: Some studies have explored the use

of voice commands for robot operation, especially in

co-located environments (Arevalo et al. 2021).

• Gaze Interaction: Gaze is often used in combination

with spatial gestures (Yuan et al. 2019), such as for

menu selection (Arevalo et al. 2021).

• Spatial Gesture Interaction: Users can manipulate

virtual waypoints (Quintero et al. 2018) or control

robots using virtual menus (Cauchard et al. 2019)

through spatial gestures, commonly utilized in head-

mounted display interfaces. Spatial gestures can also be

employed for remote management of swarm robots (Siu

et al. 2018).

• Proximity Interaction: Proximity can be employed

implicitly for robot communication (Hoang et al.

2022). For example, an AR trajectory can be updated

to display the robot’s intent as a passerby approaches

(Watanabe et al. 2015), or a shape-shifting wall can

change the content on the robot based on the user’s

behavior and position (Takashima et al. 2016).

• Pointer and Controller Interaction: Users can manage

robots through spatial interaction or device actions with

controllers that provide tactile feedback (Hedayati et al.

2018). Users can implicitly communicate with robots,

such as creating a 3D virtual object with a 3D printer

using pointer control (Peng et al. 2018).

• Electroencephalography or Surface Electromyography.

For example, the Electroencephalography (EEG) signal

was utilized to build an online brain-computer interface

(BCI) system to control mobile robots (Lu et al. 2022).

However, this method is not stable because of the

current technology limit.

Various interaction techniques are commonly used to

operate industrial robots, such as joystick-based, screen-

based, and tangible-based kinesthetic teaching methods.

Tangible-based kinesthetic instruction, which enables

workers to directly manipulate a robot to record its tra-

jectory, is a valuable hands-on teaching method. However,

its application in the context of industrial robotics raises

critical safety concerns. The considerable size of these

robots, coupled with their high-powered actuators and the

possible inclusion of hazardous tools, creates a risk-laden

environment for human operators. The consequences of

mismanagement or inadequate maintenance of robotic

systems can be severe, leading to serious injuries or even

fatalities. Notably, the occurrence of accidents involving

industrial robots is a documented concern, particularly

in situations where robotic functionalities are deeply inte-

grated with human tasks. The integration of tangible-based

programming techniques for large-scale industrial robots

thus necessitates thorough examination. The close prox-

imity between humans and robots inherent in such inter-

active environments amplifies the potential for injury, and

the enforcement of strict safety regulations (Villani et al.

2018) imposes a significant financial cost. Furthermore, the

effectiveness of kinesthetic teaching is limited by the user’s

knowledge and ability to determine and reproduce the ideal

trajectory for a given task. This gap in knowledge or

execution can introduce operational inefficiencies and

elevate the risk of safety incidents if the robot’s perfor-

mance deviates from the intended outcome. Consequently,

the adoption of tangible-based kinesthetic programming in

industrial settings must be approached with caution to

mitigate risks. The use of joystick-based control methods

necessitates users to have a strong familiarity with direc-

tional movements, which limits the generation of complex

pathways and makes it challenging for users to produce

intricate trajectories. On the other hand, screen-based

techniques utilize 2D visual interfaces for interaction and

control, allowing touch screen, keyboard, or mouse input.

However, the movement of robotic arms occurs in three-

dimensional space, and 2D screens are unable to accurately

represent spatial trajectories. Additionally, both joystick-

based and screen-based methods require users to memorize

complex commands from external platforms, lacking a

direct connection to the robot and increasing cognitive

demands. While these methods offer a higher level of

safety compared with tangible-based methods, they may

lack sufficient intuitiveness.

The integration of augmented reality (AR) into robotics

has the potential to significantly enhance human–robot
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interaction by offering an immersive and intuitive experi-

ence. AR technology enables multi-modal interactions,

presenting vital information about the robot’s status,

environment, and tasks, thereby facilitating human under-

standing and control of robotic actions. Employing AR in

robotics can improve programming and control while also

fostering greater understanding, interpretation, and com-

munication, as highlighted in recent surveys and studies

(Mukherjee et al. 2022; Yin et al. 2023). AR interfaces can

convey a range of information types, such as the robot’s

internal state, environmental context, planned activities,

and additional supportive content. This diverse information

delivery is instrumental in aiding users’ comprehension

and interpretation of robot behavior (Suzuki et al. 2022).

Despite these advancements, challenges persist, such as

creating intuitive and user-friendly interfaces for non-ex-

perts and integrating AR technology with existing manu-

facturing systems and workflows.

Similarly, the digital twin (DT) concept has emerged as

a transformative technology with the potential to redefine

smart manufacturing and Industry 5.0. DT’s defining

characteristic is its ability to merge physical and digital

worlds, creating a real-time virtual counterpart of physical

entities, processes, or systems. For example, in manufac-

turing, DT models simulate production line behaviors,

offering engineers valuable insights for performance opti-

mization and preemptive issue resolution (Tao et al. 2019).

The energy sector uses DT models to anticipate and miti-

gate power outages by simulating grid behaviors (Sifat

et al. 2022), and in healthcare, DT models replicate patient

physiology, aiding in more accurate diagnosis and treat-

ment planning (Okegbile et al. 2022). Despite the wide-

spread application of DT in various domains, the

confluence of DT and AR technologies in the HRI domain

remains in the early stages of development and application.

The slow adoption of DT and AR in HRI can be

attributed to several factors. The complexity of these

technologies and the need for interdisciplinary expertise for

their successful integration have been significant barriers.

Additionally, industrial inertia, cost concerns, and the

required evidence for the long-term benefit of these tech-

nologies have slowed their implementation in manufac-

turing. Moreover, the development of accurate and real-

time DTs for effective AR integration, ensuring system

safety and reliability, and understanding human factors in

technology interaction are challenges that researchers

continue to address.

In our work, we propose an innovative AR-based DT

system designed to enhance the quality and experience of

HRI within the manufacturing sector. Our system is

structured around three levels of DT functionality: the

virtual twin for real-time monitoring, the hybrid twin for

intuitive interaction, and the cognitive twin for optimized

operation. By integrating AR technology with DT, we

create a virtual representation of a robot arm that provides

real-time data and insights into its performance, leading to

more efficient and adaptable manufacturing operations.

The implementation of this AR-based DT interface show-

cases significant improvements in operational efficiency

and flexibility. Furthermore, our research offers valuable

insights into the challenges and opportunities of merging

AR and DT technologies, contributing to the broader dis-

course on technological integration in the era of Industry

4.0.

The paper is organized as follows: Sect. 2 provided the

literature review of AR and DT technology and their

industrial applications. The system design and implemen-

tation are introduced in Sect. 3. The demonstration for

three levels of DT is elaborated in Sect. 4. The human-

centric user study is presented in Sect. 5. Finally, some

concluding remarks are provided in Sect. 6.

2 Literature review

The use of AR technology in HRI has become increasingly

prevalent in various applications (Baroroh et al. 2021).

Suzuki et al. (2022) classified existing AR applications for

robots into 12 high-level clusters based on their types of

applications. These clusters include data physicalization,

robots for workspaces, search and rescue, mobility and

transportation, telepresence and remote collaboration,

medical and health, design and creative tasks, social

interaction, education and training, entertainment, industry

applications, and domestic and everyday use. The largest

category of applications is industry, which includes man-

ufacturing, assembly, maintenance, and factory automa-

tion. In many of these cases, AR can help reduce the

workload of assembly or maintenance or program robots

for automation.

The concept of DT was first introduced by Michael

Grieves in 2002 as a model for product lifecycle manage-

ment (Grieves and Vickers 2017). The application of DT as

a data-driven and multi-physics model-based simulation

and prediction tool for predictive maintenance of aircraft

was first introduced by NASA and USAF (Tuegel et al.

2011). The original concept of DT, as proposed by Grieves,

consisted of three fundamental elements: a physical entity,

a virtual model, and their interconnection. The Interna-

tional Organization for Standardization (ISO) also

emphasizes the importance of the synchronization property

of the observable manufacturing element (OME) and its

digital representation (ISO 2020). As a cutting-edge tech-

nology in modern industry, DT is gaining widespread

recognition from both academia and industry, as it facili-

tates effective monitoring, maintenance, and optimization
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of industrial systems, thereby enhancing their productivity

and efficiency (Liu et al. 2022c).

Augmented reality (AR) and digital twins (DT) are

sophisticated technological paradigms that serve as con-

duits between the digital and physical realms, representing

a salient trend in the evolution of future industrial land-

scapes. AR and DT exhibit a symbiotic relationship,

wherein AR enhances DT through the facilitation of

information visualization and interactive modalities. The

convergence of AR and DT has engendered a plethora of

applications within the domain of human–robot interaction

(HRI). For example, Li et al. (2023) have conceptualized a

DT-based HRI system that integrates visual augmentation

for workers, robot velocity modulation, preemptive motion

visualization, collision detection, and a deep reinforcement

learning algorithm for robot collision avoidance, all

orchestrated within an AR-augmented framework. Par-

ipooranan et al. (2020) proposed an AR-enabled DT for 3D

Printing. Kuts et al. (2018) used AR to integrate decision

trees with machine learning and computer vision for self-

learning robot programming, including simulating and

testing robot manipulation with the DT concept. Cai et al.

(2020) have executed a layout design method for a multi-

robot additive manufacturing system, employing AR-based

DT to aid operators in the spatial arrangement of robots.

Müller et al. (2021) built the DT system for robot pro-

gramming by demonstration via AR interaction. Amtsberg

et al. (2021) built the DT of robots and work objects, and

utilized AR to facilitate interaction methods that enhance

communication and collaboration between users and

robots, ultimately leading to more effective task sharing.

To elucidate the interplay between AR and DT, Yin et al.

(2023) have categorized AR-assisted DT systems into three

distinct levels based on their functional characteristics and

data flow dynamics:

• Virtual Twin, involves the transmitting of physical to

virtual data, sensor data-based functions of monitoring

and alerting, and non-registered visualization. For

instance, it can visualize a robot’s state and behavior

in real-time, aiding in monitoring, diagnosing perfor-

mance, and identifying potential issues before they

become critical. Current research predominantly uti-

lizes virtual twins to facilitate such geometry and data

visualization, simulation, and inspections in manufac-

turing settings.

• Hybrid Twin, on the other hand, focuses on the analysis

and feedback of virtual to physical systems, which

encompasses various components such as multi-modal

interaction and control, visual registration, context

information-related analysis, and the functions that

are realized based on them. For instance, in the context

of HRI assembly scenarios, the AR-based DT utilizes

scene understanding capabilities and object detection to

analyze workspace information collected by the

HoloLens sensing system. With an understanding of

the assembly process, the virtual assembly step can be

visualized beforehand through AR (Liu et al. 2022a).

Additionally, the cyber-physical interaction includes

collision detection between the physical entity and the

virtual model, which can be applied in HRI (Li et al.

2023). This integration facilitates an intuitive and

interactive HRI, paving the way for more dynamic

and responsive control processes.

• Cognitive Twin, regarded as the high-level cognitive

DT, involving both human and machine intelligence. A

cognitive twin can be instructed by human operators

and study how to perform better and fulfill human

needs. For instance, in human–robot collaboration tasks

(Dimitropoulos et al. 2021), the users can correct the

robot poses through gesture interaction with the robot’s

DT, which can lead to improved human ergonomics. In

the prefabrication process for timber, AR provides

suitable interaction methods that enable users and

cobots to better understand each other and ultimately

achieve harmonious task sharing (Amtsberg et al.

2021). Cognitive twins possess the distinct advantage

of effectively addressing complex and unpredictable si-

tuations by harnessing the power of human intelligence.

This capability allows DT system to dynamically adapt

and respond to intricate scenarios, surpassing the

limitations of traditional DT, which can be applied in

operation optimization, and system evolution in HRI

scenarios.

In current research on AR-based HRI within the manu-

facturing sector, the majority of interaction methods are

focused on the first level, utilizing the virtual twin to

visualize and inspect machines (Müller et al. 2021; Choi

and Cai 2014). Some studies examine the hybrid twin,

employing the virtual domain to control the machines

(Ostanin et al. 2020), while only a few investigate the

cognitive twin (Liu et al. 2022b). Moreover, even within

level 3, the emphasis is often on machine intelligence, with

human intelligence being overlooked (Yin et al. 2023). In

the context of the future human-centric industrial para-

digm, the well-being of individual workers remains a pri-

mary concern. This integration of AR and DT aligns with

the human-centric concepts wave and benefits Industry 5.0

(Breque et al. 2021), human-centered intelligent manu-

facturing (Baicun et al. 2020), and human cyber-physical

system (HCPS) (Wang et al. 2022). HRI has surfaced as a

promising and challenging research area in the pursuit of

human-centric manufacturing systems (Huang et al. 2022).

Further exploration in this field may include developing

advanced and intuitive systems that allow human operators
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to engage with DT models of robots. These systems could

potentially enhance the efficiency of monitoring, mainte-

nance, and optimization of robotic systems while simulta-

neously improving users’ comprehension of the robot’s

behavior and performance.

3 System design and implementation

The overall structure of the 3-level DT construction for

AR-based HRI is depicted in Fig. 1. In this proposed sys-

tem, the robot functions as the physical platform that

executes the desired tasks, while the HoloLens device

serves as the interface between the operator and the robot.

The human operator is in charge of controlling and over-

seeing the robot’s actions and interactions.

The 3-level DT is organized as progressive layers. The

most fundamental level is the virtual twin, where real joint

states, trajectories, collisions, sensor data, and other phys-

ical messages can be transferred to the virtual counterparts.

This allows for real-time monitoring, visualization, and

diagnosis. Beyond the single-directional data transmission

from the physical to the virtual, the hybrid twin enables

two-way communication between the physical asset and its

corresponding virtual counterpart. Consequently, goal

positions, limitations, desired joint angles, and some sys-

tem commands can be sent to the physical counterpart. At

level 3, human involvement is introduced, and human

intelligence is utilized to control and optimize the robot’s

operation, such as collision avoidance and trajectory opti-

mization through the AR interface. The study expands

upon the theoretical framework outlined in reference (Yin

et al. 2023) by providing a detailed and contextualized

application, thereby offering a tangible demonstration of

the functionality and interactions across all three levels of

AR-based Digital Twins. Through this practical example,

we illustrate the seamless integration of three levels and

highlight the progressive relationship that extends from the

virtual to the cognitive level, emphasizing how each sub-

sequent level builds upon the foundation laid by its

predecessors.

The framework comprises three primary components:

communication between the robot and HoloLens 2, intu-

itive interface design, and implementation of essential

algorithms such as spatial anchor, object recognition and

tracking, and robot kinematic model.

3.1 Intuitive interface design

The intuitive interface is a crucial aspect of HRI, which can

greatly impact the efficiency and ease of use of the system.

An ideal interface for HRI should have three essential

functions: visualization, simulation, and control. Visual-

ization provides real-time feedback on the robot’s position,

orientation, and movements. The simulation module should

accurately represent the robot and its environment, allow-

ing the user to visualize and interact with the robot in a

virtual environment, accommodating different scenarios

and variations. This allows for experimentation and opti-

mization of the robot’s behavior before implementing it in

the real world. Control enables the user to efficiently and

effectively manipulate the robot’s movement and behavior

to accomplish various tasks and operations, such as

adjusting position, orientation, and motion trajectory and

Fig. 1 The framework of DT for AR-based HRI
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controlling speed and force. Incorporating these three

functions enhances the user’s experience, and increases the

efficiency and effectiveness of the overall system (Fig. 2).

Hololens 2 is a mixed-reality headset developed by

Microsoft, designed to provide an immersive experience

for the user by blending the virtual and real world. The

Hololens 2 is equipped with advanced sensors and cameras,

including depth-sensing cameras and eye-tracking sensors,

which enable the device to recognize and track the user’s

head and hand movements in real-time. This technology

allows the user to interact with virtual objects and envi-

ronments in a natural and intuitive way, making it an ideal

platform for HRI. Unity, a popular game development

engine, is utilized to create the AR environment and user

interface for controlling the robot arm. Unity provides a

range of tools and features to simplify the development

process and enable the creation of immersive and interac-

tive applications. The author used the Mixed Reality

Toolkit (MRTK) for Unity, which is an open-source toolkit

designed to simplify the development of mixed-reality

applications. The MRTK provides a set of pre-built com-

ponents and tools that can be used to create immersive

experiences using the Hololens 2 headset. The interface

design based on Hololens 2 incorporates several compo-

nents that enable the user to control the robot arm using AR

technology. These components include:

• Reset button: allows the user to reset the robot to its

initial position.

• Joint angles: the joint angles of the robot, along with

the gripper status, are presented and can be modified

through the use of either the joint slider control or

gesture control with the DT robot arm. The parameters

are arranged from left to right and correspond to the

6th, 5th, 4th, 3rd, 2nd, and 1st joints, as well as the

gripper status. The joint range is ½�180�; 180��, except

for the 2nd joint, which has a range of ½0�; 180�� to

prevent collisions with the ground.

• Joints slider controller: enables the user to adjust the

angles of each joint of the robot using a slider.

• Control toggle: enables intuitive gesture interaction

with the DT model.

• Spatial anchor: anchors the robot to a real location

within the real world, allows the user to alter its

position, resulting in a corresponding change in the

virtual robot’s location within the real world.

• Virtual robot arm: provides a visual representation of

the robot arm in the AR environment. The users can

control it using gestures. The virtual robot DT model

can be overlaid with its physical counterparts to provide

a more intuitive and accurate representation.

In order to facilitate intuitive and efficient control of the

robot arm, the proposed interface incorporates gesture

recognition technology using Hololens 2. This new inter-

action method allows users to directly manipulate the robot

arm with intuitive gestures, such as pinching fingers or

making a fist. The user can also use other gestures or

modalities, such as voice and gaze based on preference or

behavior.

The interface’s operation process includes far manipu-

lation and near manipulation, see Fig. 3. In far manipula-

tion, the user uses their hand to select the robot joint and

then pinches their finger, causing the hand ray to become

solid and indicating that the joint has been selected. The

user can then move their hand left or right to move the

corresponding robot joint. In near manipulation, the user

needs to get close to the virtual robot arm, touch the desired

robot joint with their hand, and then pinch their finger to

select the joint before moving their hand left or right to

manipulate it. In contrast to far manipulation, near control

involves an additional implicit modality, namely proxim-

ity, wherein the user approaches the object, leading to the

suspension of far manipulation and activation of near

control. Consequently, near manipulation is a multi-modal

interaction that encompasses both gesture and proximity.

Fig. 2 The AR intuitive

interface based on HoloLens 2
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The control logic for intuitive HRI entails several crit-

ical components. Firstly, the DT system detects the initia-

tion of manipulation, whereby the user’s finger pinch

triggers a transition in the select line from a dotted to a

solid form. This signifies the commencement of the

manipulation process. Subsequently, the HoloLens 2

begins to meticulously track the movement of the user’s

finger, as explicated in Sect. 3.3.2. The system then pro-

ceeds to translate the detected movement of the user’s

thumb to the corresponding alteration in the robot joint’s

angle. Notably, once the user has concluded the intended

operation, such as releasing fingers, the system ceases

tracking the finger’s movement, thereby preventing further

alterations from being transmitted to the robot. This design

enables users to focus on the robot arm and maneuver their

hand to effectuate changes in the joint angle with precision

and ease, reducing the mental workload required for HRI.

Another method of control available in the interface is

slider control. The user can move the slider on the left side

to control the specified joint’s movement. However, as the

control slider is not directly related to the robot arm and

lacks intuitive feedback, it may not be as effective for HRI

as gesture recognition technology. It is noted that the

sliders in the AR interface are mainly used for visualization

and debugging.

3.2 Communication

How to establish the communication between the Holo-

Lens 2 and the robot arm is critical for the DT. A viable

approach for achieving this objective is to utilize the Robot

Operating System (ROS) middleware system. ROS is a

popular open-source framework that provides an infras-

tructure for controlling both software and hardware com-

ponents of robotic systems. It also includes a messaging

system that facilitates communication among the different

elements of a robotic system. In addition, the Rosbridge

package provides a JSON API to ROS functionality for

non-ROS programs. There are a variety of front ends that

interface with Rosbridge, in this work we adopt the Web-

Socket server for web browsers to interact with. In the

present study, a Wi-Fi connection is employed as the

means of establishing a connection, while the Rosbridge is

utilized to establish a communication protocol between the

HoloLens and the robot arm, thus facilitating real-time

monitoring and control of the robot’s performance during

operational processes.

3.3 Fundamental algorithm

In this section, the essential algorithms, including spatial

anchor, object recognition and tracking in AR, and robotics

forward and inverse kinematics, are introduced.

3.3.1 Spatial anchor for AR

The integration of AR with a physical robot arm poses a

challenge in aligning virtual objects with the tangible

environment. To address this, a spatial anchor is utilized to

establish a virtual point in a three-dimensional space that is

affixed to a tangible object or location. This anchor pre-

serves the orientation and location of AR content in the

tangible world, even when the camera is in motion. Unlike

visual markers that trigger AR experiences, spatial anchors

serve as a reference point for all other objects in the AR

environment. The illustration of the spatial anchor is shown

in Fig. 4.

In order to determine the position of a virtual object in

the global coordinate system, it is necessary to know its

position and orientation relative to the spatial anchor in the

local coordinate system. In this study, the position (Pl) and

orientation (Rl) of the virtual object with respect to the

Fig. 3 Two interaction ways:

a far manipulation and b near

manipulation
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spatial anchor are predetermined in Unity scenes and can

be adjusted through human interaction. The 3 � 3 rotation

matrix Rl represents the orientation of the virtual object

relative to the spatial anchor and can be computed using

Euler angles or quaternions. Euler angles define the virtual

object’s orientation through three angles of rotation around

the x, y, and z axes, while quaternions provide a more

concise representation of orientation using a four-dimen-

sional vector.

A homogeneous coordinate in a 4 � 4 metric (Gl) can be

utilized to represent the local gesture, including the posi-

tion and orientation with respect to the spatial anchor:

Gl ¼
Rl Pl

Oð1 � 3Þ 1

� �
ð1Þ

The transformation process that maps the local Gl to the

global Gw can be expressed as:

Gw ¼ T � Gl ð2Þ

where T is a 4 � 4 homogeneous transformation matrix:

T ¼
Rw Pw

Oð1 � 3Þ 1

� �
ð3Þ

here Rw is a 3 � 3 matrix that characterizes the orientation,

and Pw is a 3 � 1 vector that denotes the position of the

spatial anchor with respect to the global coordinate system.

It should be noted that the global coordinate system is

located in the real world, while the local coordinate system

is in the virtual scene. Through Eq. 2, the virtual world is

aligned with the real world, allowing users to modify the

location of the entire virtual scene by adjusting the

anchor’s position through AR interactions.

3.3.2 Object recognition and tracking

The Hololens 2 is a potent tool for object recognition and

tracking that utilizes advanced computer vision algorithms

and machine learning techniques to identify and track

objects in the real world. One commonly used algorithm

for object recognition and tracking is the convolutional

neural network (CNN). CNNs are a type of deep learning

algorithm that can be trained to classify images based on

their features. The Hololens 2 can use a pre-trained CNN to

quickly classify objects based on their features, allowing it

to quickly identify them in future images.

In this work, the Hololens 2 was used for finger recog-

nition and tracking. This is achieved using a combination

of depth sensors and machine learning algorithms to detect

and track the position and movement of the user’s fingers.

One common algorithm for finger recognition and tracking

is the Hand Keypoint Detection algorithm, which is based

on a CNN architecture. The algorithm works by first

detecting the hand in the image, then using a CNN to detect

the key points of the hand, such as the tips of the fingers

and the base of the palm.

The algorithm for Hand Keypoint Detection can be

mathematically articulated through the following set of

equations:

hi;j ¼ rðWi;jxþ bjÞ ð4Þ

y ¼ softmaxðUhþ cÞ ð5Þ

Herein, x denotes the input image, W and U represent the

respective weight matrices, b and c are the corresponding

bias vectors, r refers to the activation function (such as the

Rectified Linear Unit, ReLU), and softmax is the function

employed for generating the output. The culmination of

this algorithm is a constellation of keypoints that serve to

delineate the position and trajectories of the user’s digits.

In the context of this work, the thumb’s displacement is

leveraged as a proxy for modifying the angular disposition

of a joint:

Dh ¼ KfDy ð6Þ

where Dh is the alteration of the robot’s joint angle, Dy is

the thumb’s movement, and Kf epitomizes the linear factor

that correlates the motion of the thumb to the angular

variation of the joint. During actual manipulation, the user

Fig. 4 Illustration of the

transformation between the

virtual world and the real world

using spatial anchor
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designates a specific robot joint and moves the finger either

to the left or the right; consequently, the thumb’s dis-

placement is transduced into a corresponding alteration in

the robot’s joint angle.

3.3.3 Robot kinematic model

The robot kinematic model is a mathematical representa-

tion of a robot’s physical structure and movement capa-

bilities. It provides an understanding of the relationship

between the robot’s joints and links and how they move

relative to each other. The Denavit–Hartenberg (DH)

model is a commonly used kinematic model that uses four

parameters to describe the relationship between adjacent

links in a robot arm, where the DH model for the robot arm

used in this work is shown in ‘‘Appendix A’’. The DH

model can be used to calculate the position and orientation

of the end effector of a robot arm given the joint angles.

The forward kinematics equation for a robot arm using

the DH model is expressed as:

Tn ¼ T1 � T2 � � � � � Tn�1 ð7Þ

where Tn is the homogeneous transformation matrix that

describes the position and orientation of the end effector,

and T1 to Tn�1 are the homogeneous transformation

matrices that describe the position and orientation of each

link in the robot arm. The DH parameters including the link

length ai, the link twist ai, the link offset di, and the joint

angle hi, shown in Fig. 14, are used to calculate these

transformation matrices as the transformation matrix Ti:

Ti ¼

cos hi � sin hi cos ai sin hi sin ai ai cos hi
sin hi cos hi cos ai � cos hi sin ai ai sin hi

0 sin ai cos ai di

0 0 0 1

2
6664

3
7775

ð8Þ

Therefore, the final gesture can be expressed as a combi-

nation of the position and orientation vectors, obtained

from the translation vector and rotation matrix of the

transformation matrix Tn, respectively. The position vector

p can be obtained by extracting the first three elements of

the fourth column of Tn. That is:

p ¼ Tn;1;4 Tn;2;4 Tn;3;4½ � ð9Þ

where Tn;1;4, Tn;2;4, and Tn;3;4 represent the x, y, and z po-

sition coordinates.

The orientation matrix R can be obtained by extracting

the first three columns of the first three rows of Tn. That is:

R ¼
Tn;1;1 Tn;1;2 Tn;1;3

Tn;2;1 Tn;2;2 Tn;2;3

Tn;3;1 Tn;3;2 Tn;3;3

2
64

3
75 ð10Þ

From the orientation matrix R, we can get the orientation

angles a, b, and c.

The inverse kinematics equation is used to calculate the

joint angles required to achieve the desired position and

orientation of the end effector, expressed as:

h ¼ f�1ðqÞ ð11Þ

where h is the vector of joint angles, q represents

½x; y; z; a; b; c�, x, y, and z are the desired position coordi-

nates of the end effector, and a, b, and c are the desired

orientation angles of the end effector.

The Jacobian matrix can be used in inverse kinematic

calculation, which can be calculated using the partial

derivatives of the forward kinematics equation:

J ¼

ox

oh1

ox

oh2

� � � ox

ohn
oy

oh1

oy

oh2

� � � oy

ohn
oz

oh1

oz

oh2

� � � oz

ohn
oa
oh1

oa
oh2

� � � oa
ohn

ob
oh1

ob
oh2

� � � ob
ohn

oc
oh1

oc
oh2

� � � oc
ohn

2
666666666666666666664

3
777777777777777777775

ð12Þ

By inverting the Jacobian matrix, the joint angles required

to achieve a desired end effector position and orientation

can be calculated. This is known as the inverse kinematics

equation, which is represented by the equation

Dh ¼ J�1Dq ð13Þ

where Dh is the vector of joint angles required to achieve

the desired end effector position and orientation, J�1 is the

inverse of the Jacobian matrix, and Dq is the difference

between the desired and current end effector position and

orientation.

It is important to note that the Jacobian matrix may not

have an inverse in all configurations of the robot arm. In

these cases, alternative methods such as numerical opti-

mization or iterative methods may be used to solve the

inverse kinematics problem.

In this work, we present novel contributions to AR-

based DT systems for enhanced human–robot interaction

using the HoloLens 2 platform. Our research introduces

unique algorithms enabling intuitive, gesture-based control

interfaces, allowing users to manipulate robot joints

directly through finger movements. This direct finger-to-

joint interaction method, not inherent to the HoloLens 2,

represents an innovative approach to bridging the gap

between human intent and robotic action. Additionally, we
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developed the spatial marker algorithms requiring complex

transformations for accurate virtual-to-physical world

anchoring, and seamlessly integrated object recognition

with robot kinematics to translate user gestures into precise

robotic movement. These advancements are not only tai-

lored to the specific needs of robot control within a DT

environment but also enhance the user experience by pro-

viding a more natural and direct method of interaction.

4 Demonstration for three levels of digital twin

According to different functions and data flow directions,

DT technology is composed of three levels: the virtual

twin, the hybrid twin, and the cognitive twin (Yin et al.

2023). Figure 5 depicts the three levels of DT for AR-

based HRI.

4.1 Virtual twin

The virtual twin level allows for real-time monitoring and

data transmission from physical assets to their virtual

counterparts. In Fig. 5, the system presents the actual status

of the robot arm through a combination of values, sliders,

and a virtual robot arm, as depicted in Fig. 6. When the

tangible robot’s status undergoes modification, the values

slider and the virtual robot arm alter correspondingly. It is

noted that the virtual robot can be overlaid with the real

robot to provide a more accurate and immersive experi-

ence. This enables remote analysis of the asset’s perfor-

mance, condition, and behavior. Additionally, it facilitates

the simulation of different scenarios and the prediction of

outcomes, leading to proactive maintenance and opti-

mization of the asset. The use of simulation is particularly

beneficial for robot planning, as it provides essential

information about collisions, trajectories, and possible

outcomes before the actual operation, thereby increasing

efficiency and safety.

4.2 Hybrid twin

The hybrid twin level of DT technology enables bidirec-

tional communication between a physical asset and its

corresponding virtual counterpart. In addition to compati-

bility at the virtual level, the hybrid level allows for control

from the virtual twin to the physical twin. This means that

changes made to the virtual twin can be transmitted to the

physical asset, and vice versa. An intuitive AR interface is

designed to enable users to interact with the DT using

natural gestures, making it easier to program and control

the asset. For example, in this work, the joint angle of the

virtual robot arm can be changed by human gestures, such

as moving hands to the left or right. The interaction can be

through voice, gaze, or a combination of both in HoloLen

2. Upon activation, the physical robot will synchronize

with the virtual twin’s status, thereby facilitating the

transmission of messages from the virtual counterpart to

the tangible asset. Despite the presence of bidirectional

communication, effectively controlling the robot in

unforeseen circumstances, such as collisions with physical

objects, delays in robot motion, and operation in intricate

environments, remains challenging. Therefore, it is

imperative to integrate human intelligence into the control

loop.

4.3 Cognitive twin

The cognitive level harnesses both machine and human

intelligence to amplify the functionality of assets. Machine

intelligence has proven to be particularly effective in object

recognition and tracking fields, thereby enabling more

precise and intuitive user interactions. Utilizing machine

learning algorithms, the system can accurately identify and

Fig. 5 Illustration for three

levels of DT (virtual twin,

hybrid twin, and cognitive twin)

of the HRI, with the

corresponding functionalities

for real-time monitoring,

intuitive interaction and control,

and optimized operation

through human intelligence
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track objects, consequently allowing users to better navi-

gate and manipulate their assets. Furthermore, the amal-

gamation of human and machine intelligence contributes to

enhancing the overall functionality of the asset, as it fosters

a more comprehensive and dynamic approach to problem-

solving and decision-making. The integration of these

cognitive technologies possesses the potential to transform

asset optimization and elevate the overall user experience.

As the demand for adaptable and personalized smart

manufacturing intensifies, human intelligence continues to

play a vital role in the industry. Specifically, AR interfaces

support the conveyance of human creativity and ideas to

manufacturing systems, particularly in scenarios that

require on-demand fabrication or smart agent control. In

this research, human users contribute input and guidance to

the DT, thereby optimizing its performance and capabili-

ties. For example, during the pretest simulation, users can

immerse themselves in the running condition. If an issue

arises, such as collision, misplacement, or confused targets,

as depicted in Fig. 7, users can employ their intelligence to

address the problem and make informed decisions. Corre-

sponding actions may encompass relocating the colliding

item, adjusting the trajectory, and recognizing the true

target, among other interventions. At the cognitive twin

level, it demonstrates the capability to effectively navigate

complex and unpredictable scenarios by leveraging human

intelligence.

In summary, DT system offers a powerful approach to

monitoring, simulating, and optimizing physical assets.

Each level offers unique features and capabilities, enabling

different degrees of interaction and optimization between

the physical asset and its virtual twin.

5 User study

To gauge the effectiveness of the proposed AR-based DT

system for a robotic arm, we designed and conducted a user

study. The outcomes demonstrated that the proposed sys-

tem considerably decreased the operation time and reduced

errors compared to the conventional one. Furthermore,

participants reported increased satisfaction and perceived

ease of use with our system. The study involved a diverse

group of 7 participants with varying levels of experience in

the manufacturing sector, primarily consisting of engi-

neering students aged between 20 and 28 years old. Three

participants had prior familiarity with robotic arm opera-

tions, but none had any previous experience with AR or

HoloLens 2 technologies.

In modern industry, the pick-and-place task is one of the

most widespread scenarios, typically carried out by either

automated machines or human workers. Due to the superior

flexibility of human intelligence and physical abilities

compared to machines, human workers are better equipped

to adapt to changes in the manufacturing line. In contrast,

machines necessitate human intervention for reprogram-

ming, reconfiguration, or relocation when alterations are

made to the factory layout. In a human-centric manufac-

turing environment, humans play a central role in the

operation of the smart reconfigurable manufacturing

Fig. 6 Visualization function of

DT system for the robot arm.

The virtual arm can be overlaid

or separated from the real robot.

As the real robot undergoes

changes in its status, the virtual

representation dynamically

reflects these modifications

through the adjustment of

values, sliders, and the virtual

robot itself
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system. Therefore, it is imperative to enhance the perfor-

mance of HRI in the pick-and-place scenario to drive the

progress of smart manufacturing. This user study focused

on a straightforward pick-and-place task, in which partic-

ipants were required to pick up a cube from one location

and transfer it to a designated goal position.

Conventional methods of HRI often involve the use of

joystick-based, screen-based, and tangibility-based kines-

thetic teaching techniques. However, industrial robots can

be bulky and hazardous in practical situations, thereby

posing a risk to workers employing tangibility-based

approaches. Considering the similarities in functionality

between joystick-based and screen-based interactions, this

study chose to utilize screen-based interaction as the con-

trol group. To support this task, an augmented reality (AR)-

based DT system was developed for the robotic arm. The

study was equipped with all necessary components for both

AR and conventional interactions, including HoloLens 2, a

display screen, a mouse, and a computer. For safety rea-

sons, a desktop robot arm, Elephant robot myCobot 280-Pi,

was employed in this research.

5.1 Procedure

The procedure section describes the step-by-step process of

the user study, comprising a training session, a controlled

experiment, and a post-experiment survey. The framework

of the user study is shown in Fig. 8.

5.1.1 Training session

The participants underwent a brief yet comprehensive

training session on the usage of both the AR-based DT

system and the conventional 2D screen control. The

training session for the AR-based DT system included

instructions on the AR interface, gesture controls, and

visualization features of the DT. Conversely, the training

session for the conventional 2D screen control encom-

passed instructions on the 2D screen GUI, mouse control,

and keyboard input for the joint angle. Each participant

will undergo a 30-minute training session in order to

familiarize themselves with the operation of the robot in

both HRI modes. This training session allows users to

practice the task multiple times in both interaction modes,

thereby ensuring that they are proficient in operating the

robot. Once participants demonstrate proficiency in both

interaction modes, the experiment will commence.

5.1.2 Controlled experiment

In this rigorously controlled experiment, the participants

were assigned to complete two distinct sets of tasks. The

Fig. 7 In cognitive realms, DT

scenarios pertain to the

utilization of human intelligence

to facilitate problem-solving for

robots, particularly in instances

involving collisions with the

environment or the robot itself,

as well as in situations where

target identification becomes

ambiguous
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first group, known as the control group, employed a con-

ventional 2D screen with a mouse and keyboard to perform

the tasks. In this group, the GUI is shown as Fig. 9. The

GUI contains the visualization of the robot status, real-time

represents the gesture of a real robot; an interface of the

sliders, which the participants used to control the joint

angles.

The second group, denoted as the experimental group,

employed an AR-based DT system, as illustrated in

Fig. 10. The participants utilized natural gestures, specifi-

cally finger pinch to confirm and release to deselect, to

control the virtual robot. To enable experimenters to

comprehend the participants’ actions, a screen was utilized

for real-time monitoring of the AR environment. Experi-

menters could observe the users’ actions and offer guid-

ance to the participants to manipulate the robot to the

appropriate position.

The experimental group using the AR-based DT system

followed the procedure depicted in Fig. 11. Participants in

Fig. 8 The framework of the

user study. The user needs to

finish the pick-place task

through the AR and 2D system

Fig. 9 The setup of control

group using 2D screen

interaction. Left: The user

adjusted the joint angle using a

mouse or keyboard while facing

the 2D screen. Right: The GUI

of the robot control was shown

on 2D screen

Fig. 10 The setup of the experimental group. The participant wore

the AR glasses and utilized natural gestures to control the virtual

robot. The real-time monitoring of AR environment was presented on

screen to facilitate the experimenters to observe the users’ actions and

offer guidance
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this group could manipulate the virtual robot arm as a

simulation before operating the real robot. Once they

identified the appropriate position, they activated the real

robot to reach the same position as the virtual robot. Key

performance metrics, including the time taken and the

number of errors, were meticulously recorded for each

task. The task involved pick-and-place assignments, which

are widely prevalent in the manufacturing industry and

require users to regulate the joint angle of a robotic arm to

lift a cube and transport it to specific target positions. The

experimental group utilized an AR-based intuitive control,

while the control group relied on a 2D screen with sliders.

Throughout the experiment, objective factors such as the

time required to complete the task and the number of user

errors were recorded. The collision number, which inclu-

ded collisions with the ground and the robot itself during

the operation of the robotic arm, was used to measure the

number of errors.

5.1.3 Post-experiment survey

After the completion of the tasks, a survey was conducted

to gather feedback from participants regarding their expe-

rience using the AR-based DT system. The purpose of this

survey was to obtain insights into user satisfaction, per-

ceived ease of use, and potential areas for improvement.

The post-experiment survey is referred to several stan-

dardized questionnaires, including the System Usability

Scale (Brooke 1996), AttrakDiff (Hassenzahl et al. 2003),

and NASA TLX (Hart et al. 1988). The questionnaire

utilized in this study is presented in ‘‘Appendix B’’. The

questionnaire consisted of three sections. Section 1 focused

on the user experience with regard to accessibility, as well

as the mental and physical demands of the system. Sec-

tion 2, on the other hand, focused on the system’s perfor-

mance, including its accuracy, efficiency, and user

willingness. In this context, accuracy refers to the precision

of manipulation, specifically the user’s ability to utilize the

interface to accurately grasp an object and place it in the

intended position. Both sections utilized a 7-Likert scale,

with users being asked to score each question from 1 to 7,

with 1 being the worst and 7 being the best. Section 3

explored the system’s imperfect aspects, difficulties in

using it, and suggestions for future development.

5.2 Data analysis and discussion

This section presents a comprehensive analysis and dis-

cussion of the controlled experiment’s data. The perfor-

mance of the control group and the experimental group was

evaluated using statistical methods, specifically single-

factor analysis, which is employed to compare differences

between the two groups.

5.2.1 Objective metrics

Figure 12 illustrates the recorded data during the experi-

ment, comparing the number of errors and the time taken

for successful completion in both AR and 2D screen

interaction. The respective p values between AR and 2D

screen interaction are 0.0026 and 0.0556. The p value for

the number of errors is significantly smaller than 0.05,

indicating a substantial difference between the two groups.

However, the difference in successful completion time is

not as significant, as its p value is slightly larger than 0.05.

It is important to note that the average number of errors and

Fig. 11 The procedure of the experimental group using DT: a First

the user moved the virtual robot arm to the object and adjusted the

position and orientation, subsequently closing the virtual gripper to

grasp the object; b then activated the real robot to mirror the same

pose as the virtual robot; c Upon successfully gripping the object, the

virtual robot arm was moved to the desired location, and the virtual

gripper was opened: d the real robot was activated to replicate the

same pose
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successful completion time for the AR method are con-

siderably smaller than those of the conventional 2D screen

interaction.

In terms of the number of errors, most participants

experienced only one collision with the table, as the AR

system allows for simulation before actual execution.

Participants can maneuver the virtual robot arm to the

target and adjust its position around the object. After

finding the ideal position, they can send a command to the

real robot arm, which then replicates the virtual arm’s

position. Consequently, the majority of participants

encountered only one collision with the object. In contrast,

conventional 2D screen interaction requires users to adjust

the joint angle using a mouse or keyboard without prior

simulation, resulting in potential collisions with the

ground, object, or even the robot itself before successfully

completing the task.

As for the successful completion time, almost all par-

ticipants spent less time on AR operation, primarily

because the virtual robot exhibits a faster response rate,

while the real robot arm experiences execution delays. This

higher efficiency in moving the virtual robot arm con-

tributed to the participant’s preference for AR operation, as

they felt more at ease using the virtual arm without wor-

rying about collisions, leading to more decisive and effi-

cient actions.

5.2.2 Subjective metrics

The analysis of subjective data, i.e., the values gathered

from the questionnaire, reveals interesting insights into the

comparison between AR and 2D screen interaction. The p

values of questions Q1–Q7 in sections 1 and 2 are 0.0021,

0.0018, 0.0306, 0.2572, 0.0793, 0.0013, and 0.0054,

respectively. Only the p values of Q4 and Q5 exceed 0.05,

while the others are significantly smaller, indicating that

the levels of physical demand and accuracy are not sig-

nificantly different between the two interaction methods.

However, the other aspects exhibit significant variations.

The overall p value for all questionnaires comparing AR

and 2D screen interaction is 2.441e�11. The average value

for each question can be found in Fig. 13. The data clearly

shows that the AR method outperforms conventional 2D

screen interaction in all aspects. Questions Q6 and Q7, in

particular, reveal that efficiency and willingness to adopt

the technology are the most significant advantages of AR

interaction. The high efficiency of the AR system, as evi-

denced by previous objective metrics, is further supported

by the users’ perception, emphasizing the effectiveness of

the AR system. The participants also demonstrated a high

level of enthusiasm for the new interaction method,

expressing greater interest and willingness to adopt AR

interaction in future manufacturing scenarios compared to

2D screen interaction.

Regarding Q4, which assesses the level of physical

demand, the AR method only slightly surpasses the 2D

method, as well as in Q5, which examines accuracy. In

terms of physical demand, the AR device is somewhat

heavy and requires some degree of gesture interaction.

However, the interaction method is intuitive, and users do

not need to use a mouse or keyboard, conserving physical

strength. Consequently, the survey results show that the AR

method holds a slight advantage. The accuracy of the AR

system relies primarily on two factors: visualization accu-

racy, such as the location registration between AR and real

robotic arms, and control accuracy. Participants reported

that the former was not a significant issue. However, the

latter could be affected by hand tremors during gesture

control, leading to misplacement. Fortunately, the DT’s

simulation functionality mitigates the impact of hand tre-

mors on the real robot.

Fig. 12 The subjective data in the user study ( Error-bars show ±1

SD). The number of errors denotes the collision number, including

collisions with the ground and the robot itself during the operation of

the robotic arm. Completion time is the time required to complete the

task

Fig. 13 The average value for collected questionnaire in ‘‘Appendix

B’’ (Error-bars show ±1 SD; �p\0:05, � � p[ 0:05.). In the

questionnaire, the 7-Likert scale is adopted, with 1 being the worst

and 7 being the best
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In Q1, all participants assigned higher values to the AR

system, indicating a superior user experience compared to

2D screen interaction. In Q2, participants unanimously

considered the AR system more comfortable for learning

and controlling the robot. However, some users initially

struggled with the AR gesture control, necessitating a

training session before the experiment. Q3 addresses

mental demand, which is primarily due to confusion

regarding the corresponding joint angle and concerns about

collisions. AR offers an intuitive control method by

directly linking to the real joint, eliminating the need for

users to memorize which slider controls which joint and

accelerating the learning process. Additionally, the AR

system’s simulation functionality alleviates users’ concerns

about collisions.

The feedback from participants on section 3 has been

collected in Table 1. The most frequently requested fea-

tures for Q8 include collision detection, an integrated AR

demonstration tutorial, and trajectory replay. For Q9, par-

ticipants reported difficulties with gesture recognition,

glasses affecting their view, challenges in identifying col-

lisions with the ground, and difficulties in selecting objects

in AR using the finger pinch gesture. In Q10, they sug-

gested providing hints to users on operating the robot arm,

improving location registration between the AR and real

robotic arms, and providing additional instruction on AR

gesture interaction.

The controlled experiment conducted in this study

compared the performance of AR and conventional 2D

screen interaction in a manufacturing scenario. The

objective metrics, evaluated using statistical methods,

indicated that the AR method outperformed the 2D screen

interaction in terms of number of errors and successful

completion time. The subjective metrics, gathered from the

questionnaire, revealed that the AR method provided a

superior user experience, with higher efficiency and will-

ingness to adopt the technology. However, the physical

demand and accuracy of the AR system only slightly sur-

passed those of the 2D method. The participants also pro-

vided valuable feedback on the AR system’s strengths and

weaknesses, suggesting improvements such as collision

detection, an integrated AR demonstration tutorial, and

improved location registration. Overall, the study demon-

strated the potential of AR technology in enhancing man-

ufacturing processes, providing a more intuitive and

efficient interaction method.

The user study also corroborates that AR-facilitated

interactions confer a significant benefit by leveraging

human cognitive prowess to improve DT’s performance in

the context of a pick-and-place task. The notion of a

’Cognitive Digital Twin’ embodies the synthesis of human

experiential knowledge within the digital twin’s process of

enhancement. The infusion of human insight provides a

layer of contextual acumen and strategic oversight, which

fosters a level of sophisticated decision-making that tran-

scends the limitations of static computational algorithms.

In assessing the efficacy of AR against conventional 2D

user interfaces in terms of engaging human operators, it is

evident that the AR platform, with its immersive repre-

sentation of robotic mechanisms, empowers operators to

manage robotic functions with an intuitive and expedited

approach. This form of direct interaction engenders a

dynamic educational exchange and refines operational

processes via a synergistic human–robot interface. The

results of the study indicate that the AR-enabled DT system

surpasses its 2D interface counterpart in accuracy and

efficiency, as evidenced by a reduction in operational errors

and a decrease in the time required to complete tasks.

Furthermore, the respondents expressed a greater level of

positivity towards AR manipulation and a willingness to

use the AR interface in the questionnaire. These findings

underscore the AR’s advantages of integrating human

intelligence into the DT framework, thus yielding a more

reactive and adaptable HRI scenario.

Table 1 The questionnaire feedback for potential improvements

Section 3 Potential improvements

Q8 What features or functionalities would you like to see added to the system?

Feedback Collision detection, an integrated AR demonstration tutorial, and trajectory replay

Q9 Were there any aspects of the system that were confusing or difficult to use?

Feedback Gesture recognition, glasses affecting eyesight, identifying collisions with the ground, and selecting objects in AR using the finger

pinch gesture

Q10 Do you have any other feedback or suggestions for improving the system?

Feedback Providing hints to users on operating the robot arm, improving location registration between the AR and real robotic arms, and

providing additional instruction on AR gesture interaction
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6 Conclusion

In this study, we present a cutting-edge, AR-based digital

twin system aimed at augmenting HRI in the manufactur-

ing sector. Our proposed system artfully combines AR

technology and DT principles to generate a virtual coun-

terpart of a robot arm, achieving three distinct DT levels:

virtual twin, hybrid twin, and cognitive twin. This inno-

vative approach offers unique functionalities for real-time

monitoring, intuitive interaction and control, and optimized

operation through human intelligence. At the virtual twin

level, the system facilitates in-situ monitoring through the

transmission of physical to virtual data. In the hybrid twin

level, bidirectional message transmission between virtual

and physical entities is permitted, and an innovative AR-

based interface is developed to enable users to engage with

the DT using natural gestures. This streamlines the pro-

cesses of programming and control, fostering a more

intuitive interaction. At the cognitive twin level, human

intelligence is incorporated into the interaction, resulting in

optimized operation. A human-centric user study substan-

tiates the system’s effectiveness in reducing operation time,

minimizing errors, and enhancing overall productivity

within manufacturing environments. As per participant

feedback, the proposed system significantly elevates their

experience, increasing their inclination to utilize AR

technology in future manufacturing tasks. Our research

contributes to the progression of advanced manufacturing

solutions by capitalizing on the potential of AR and DT

technologies in HRI.

This study makes three key contributions. Firstly, it

integrates a three-level DT system comprising the virtual

twin for in-situ monitoring, the hybrid twin for intuitive

interaction, and the cognitive twin for optimized operation.

This reveals a comprehensive and embedded structure from

virtual to cognitive levels. Secondly, it introduces intuitive

interactive schemes specifically tailored for AR interfaces,

which enable more nuanced and direct control over the DT,

thereby enhancing human–robot interaction. Lastly, the

study emphasizes the empirical validation of the frame-

work through user studies, providing insights into its

practical benefits and effectiveness in real-world scenarios,

and offering evidence of its advantages over traditional

approaches.The study’s limitations encompass various

aspects, including system performance, high-level DT

implementation, and practical manufacturing scenarios.

Given that the DT system is still in its early stages, future

research will concentrate on refining the proposed system

based on feedback garnered from user studies. This will

involve enhancing collision detection capabilities with

real-world objects, integrating an augmented reality

demonstration tutorial, and implementing trajectory replay

functionality. Additionally, the integration of machine

intelligence with human intelligence in a harmonious

manner for the human-centric industry has been over-

looked, despite the current cognitive level primarily

encompassing human intelligence. Attaining a more

advanced level of DT will necessitate the integration of

advanced artificial intelligence algorithms for optimized

operation and autonomous decision-making. Finally, while

this research only applies a simple yet widely used scenario

at the application level, exploring the suitability of our

system in more complex manufacturing scenarios will be

pursued.

Appendix A: DH parameters

See Fig. 14.

Fig. 14 The DH parameters for the robot arm (ER myCobot 280 Pi)
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Appendix B: Questionnaire

See Table 2.
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